
Planning with Continuous Resources in Stochastic Domains

Content Areas: Planning under uncertainty, Markov decision processes, Search.

Abstract

We consider the problem of optimal planning
in stochastic domains with metric resource con-
straints. Our goal is to generate a policy whose
expected sum of rewards is maximized for a given
initial state. We consider a general formulation mo-
tivated by our application domain – planetary ex-
ploration – in which the choice of an action at each
step may depend on the current resource levels. We
adapt the forward search algorithm AO* to handle
our continuous state space efficiently, as demon-
strated by our experimental results.

1 Introduction
There are many problems inherent in communication with re-
mote devices such as planet exploratory rovers[Bresinaet al.,
2002]. Therefore, remote rovers must operate autonomously
over substantial periods of time. Moreover, the surfaces of
planets are very uncertain environments: there is a great deal
of uncertainty in the duration, energy consumption, and out-
come of a rover’s actions. Currently, instructions sent to plan-
etary rovers are in the form of a simple plan for attaining a
single goal (e.g., photographing some interesting rock). The
rover attempts to carry this out, and when done remains idle.
If it fails early on, it makes no attempt to recover and possi-
bly achieve an alternative goal. This may have serious impact
on missions. For instance, it has been estimated that the 1997
Mars Pathfinder rover spent between 40% and 75% of its time
doing nothing because plans did not execute as expected.

Working in this application domain, our goal is to provide
a planning algorithm that can generate a reliable contingent
plan that can respond to different events and action outcomes.
This plan must optimize the expected value of the experi-
ments conducted by the rover, while being aware of its time,
energy, and memory constraints. In particular, we must pay
attention to the fact that given any initial state, there are many
experiments the rover could conduct,most combinations of
whichare infeasible due to resource constraints. General fea-
tures of our problem include: (1) concrete starting state; (2)
continuous resources (including time) with stochastic con-
sumption; (3) uncertain action effects; (4) several possible
one-time-rewards, only a subset of which are achievable. This

type of problem is of general interest, as it fits a large class of
(stochastic) logistics problems, and many more.

Past work has dealt with various variants of this problem.
Related work on MDPs with resource constraints includes the
model of constrained MDPs developed in the OR commu-
nity [Altman, 1999]. In this model, a linear program includes
constraints on resource consumption and is used to find the
best feasible policy, given an initial state and resource alloca-
tion. But a drawback of the constrained MDP model is that it
does not include resources in the state space, and thus a pol-
icy cannot be conditioned on resource availability. Moreover,
resource consumption is modeled as deterministic. In the area
of decision-theoretic planning, several techniques have been
proposed to handle uncertain continuous variables (e.g.[Feng
et al., 2004; Younes and Simmons, 2004]). Finally, [Smith,
2004; van den Brielet al., 2004] considered the problem of
over-subscription planning, i.e., planning with a large set of
goals which is not entirely achievable. They provide tech-
niques for selecting a subset of goals for which to plan, but
they deal only with deterministic domains.

Our main contribution is an implemented algorithm that
handles all of these problems together: oversubscription plan-
ning, uncertainty, and limited continuous resources. Our ap-
proach is to include resources in the state description. This
allows decisions to be made based on resource availabil-
ity, and it allows a stochastic resource consumption model
(as opposed to constrained MDPs). Although this increases
the size of the state space, we assume that the value func-
tions may be represented compactly and we use the work of
Feng et al. (2004) on piecewise constant and linear approxi-
mations of dynamic programming (DP) in our implementa-
tion. However, standard DP does not exploit the fact that
the reachable state space is much smaller than the complete
state space, especially in the presence of resource constraints.
Our contribution in this paper is to show how to use the
forward heuristic search algorithm called AO*[Pearl, 1984;
Hansen and Zilberstein, 2001] to solve MDPs with resource
constraints and continuous resource variables. Unlike DP,
forward search keeps track of the trajectory from the start
state to each reachable state, and thus it can check whether the
trajectory is feasible or violates a resource constraint. This al-
lows heuristic search to prune infeasible trajectories and can
dramatically reduce the number of states that must be consid-
ered to find an optimal policy. This is particularly important

in our domain where the discrete state space is huge (expo-
nential in the number of goals), yet the portion reachable from
any initial state is relatively small because of the resource
constraints. It is well-known that heuristic search can be more
efficient than DP because it leverages a search heuristic and
reachability constraints to focus computation on the relevant
parts of the state space. We show that for problems with re-
source constraints, this advantage can be even greater than
usual because resource constraints further limit reachability.

2 Problem Definition and Solution Approach
Problem definition We consider a Markov decision pro-
cess (MDP) with both continuous and discrete state vari-
ables. Continuous variables typically represent resources,
where one possible type of resource is time. Discrete vari-
ables model other aspects of the state, including (in our appli-
cation) the set of goals achieved so far by the rover. (Keeping
track of already-achieved goals ensures a Markovian reward
structure, since we reward achievement of a goal only if it was
not achieved in the past.) Although our models typically con-
tain multiple discrete variables, this plays no role in the de-
scription of our algorithm, and so, for notational convenience,
we model the discrete component as a single variable.

A Markov states ∈ S is a pair(n,x) wheren ∈ N is the
discrete variable, andx = (xi) is a vector of continuous vari-
ables. The domain of eachxi is an intervalXi of the real line,
andX =

⊗
i Xi is the hypercube over which the continuous

variables are defined. We assume an explicitinitial state, de-
noted(n0,x0), and one or more absorbingterminal states.
One terminal state corresponds to the situation in which all
goals have been achieved. Others model situations in which
resources have been exhausted or an action has resulted in
some error condition that requires executing a safe sequence
by the rover and terminating plan execution.

State transition probabilitiesare given by the function
Pr(s′ | s, a), wheres = (n,x) denotes the state before ac-
tion a ands′ = (n′,x′) denotes the state after actiona, also
called the arrival state. Following[Fenget al., 2004], the
probabilities are decomposed into: (1) the discrete marginals
Pr(n′|n,x, a). For all (n,x, a),

∑
n′∈N Pr(n′|n,x, a) =

1; the continuous conditionalsPr(x′|n,x, a, n′). For all
(n,x, a, n′),

∫
x′∈X

Pr(x′|n,x, a, n′)dx′ = 1. Any transition
that results in negative value for some continuous variable is
viewed as a transition into a terminal state.

The reward of a transition is a function of the arrival
state only. More complex dependencies are possible, but
this is sufficient for our goal-based domain models. We let
Rn(x) ≥ 0 denote therewardassociated with a transition to
state(n,x).

In our application domain, continuous variables model
non-replenishable resources. We also assume that each ac-
tion has some minimal positive consumption of at least one
resource. An important implication of this assumption is
that the number of possible steps in any execution of a plan
is bounded, which we refer to by saying the problem has a
bounded horizon. Note that the actual number of steps until
termination can vary depending on actual resource consump-
tion.

Given an initial state(n0,x0), the objective is to find a
policy that maximizes expected cumulative reward. In our
application, this is equal to the sum of the rewards for the
goals achieved before running out of a resource. Note that
there is no direct incentive to save resources: an optimal solu-
tion would save resources only if this allows achieving more
goals. Therefore, we stay in a standard decision-theoretic
framework. This problem is solved by solving Bellman’s op-
timality equation, which takes the following form:

V 0
n (x) = 0 ,

V t+1
n (x) = max

a∈An(x)

[∑
n′∈N

Pr(n′ |, n,x, a) ,∫
x′

Pr(x′ | n,x, a, n′)
(
Rn′(x′) + V t

n′(x′)
)
dx′

] (1)

whereAn(x) denotes the set of actions executable in(n,x).
Note that the indext represents sequential order but does not
necessarily correspond to time in the planning problem. The
duration of actions is one of the biggest source of uncertainty
in our rover problems, and we typically model time as one of
the continuous resourcesxi.

Solution approach Feng et al.[2004] describe a dynamic
programming (DP) algorithm that solves this Bellman opti-
mality equation. In particular, they show that the continuous
integral overx′ can be computed exactly, as long as the tran-
sition function satisfies certain conditions. We defer a dis-
cussion of the details of their approach until Section 3.3, and
treat this computation as a black-box for now. This allows us
to simplify the description of our algorithm in the next section
and focus on our contribution.

The difficulty we address in this paper is the potentially
huge size of the state space, which makes DP infeasible.
One reason for this size is the existence of continuous vari-
ables. But even if we only consider the discrete compo-
nent of the state space, the size of the state space is expo-
nential in the number of propositional variables comprising
the discrete component. To address this issue, we use for-
ward heuristic search in the form of a novel variant of the
AO* algorithm. Recall that AO* is an algorithm for search-
ing AND/OR graphs[Pearl, 1984; Hansen and Zilberstein,
2001]. Such graphs arise in problems where there are choices
(the OR components), and each choice can have multiple con-
sequences (the AND component), as is the case in planning
under uncertainty. AO* can be very effective in solving such
planning problems when there is a large state space. One rea-
son for this is that AO* only considers states that are reach-
able from an initial state. Another reason is that given an
informative heuristic function, AO* focuses on states that are
reachable in the course of executing a good plan. As a result,
AO* often finds an optimal plan by exploring a small fraction
of the entire state space.

The challenge we face in applying AO* to this problem is
the challenge of performing state-space search in a continu-
ous state space. Our solution is to search in anaggregate state
spacethat is represented by a search graph in which there is
a node for each distinct value of the discrete component of

the state, and each node corresponds to the continuous region
of the state space for which the value of the discrete compo-
nent is the same. In this approach, different actions may be
optimal for different Markov states in the aggregate state as-
sociated with a search node, especially since the best action
is likely to depend on how much energy or time is remain-
ing. To address this problem and still find an optimal solu-
tion, we associate a value estimate with each of the Markov
states in an aggregate. Following the approach of[Fenget al.,
2004], this value function can be represented and computed
efficiently due to the continuous nature of these states and the
simplifying assumptions made about the transition functions.
Using these value estimates, we can associate different ac-
tions with different Markov states within the aggregate state
corresponding to a search node.

In order to select which node on the fringe of the search
graph to expand, we also need to associate a heuristic value
with each search node. Thus, we maintain both a value func-
tion for Markov states (which is used to make action selec-
tions) and a heuristic estimate for each search node or ag-
gregate state (which is used to decide which search node to
expand next). Details are given in the following section.

We note that LAO*, a generalization of AO*, allows for
policies that contain “loops” in order to specify behavior over
an infinite horizon[Hansen and Zilberstein, 2001]. We could
use similar ideas to extend LAO* to our setting. However,
we need not consider loops for two reasons: (1) our prob-
lems have a bounded horizon; (2) an optimal policy will not
contain any intentional loop because returning to the same
discrete state with fewer resources cannot buy us anything.
Our current implementation assumes any loop is intentional
and discards actions that create such a loop.

3 The Algorithm
A simple way of understanding our algorithm is as an AO*
variant where states with identical discrete component are ex-
panded in unison. The algorithm works with two graphs:
• The explicit graphdescribes all the states that have been
expanded so far and the AND/OR edges that connect them.
The nodes of the explicit graph are stored in two lists: OPEN
and CLOSED.
• Thegreedy policy(or partial solution) graph is a sub-graph
of the explicit graph describing the current optimal policy.
In standard AO*, a single action will be associated with each
node in the greedy graph. However, as described before, mul-
tiple actions can be associated with each node, because dif-
ferent actions may be optimal for different Markov states rep-
resented by an aggregate state.

3.1 Data Structures
The main data structure represents a search noden. It con-
tains:
• The value of the discrete state. In our application these are
the discrete state variables and set of goals achieved.
•Pointers to its parents and children in the explicit and greedy
policy graphs, as pairs(n′, a), wheren′ is a parent/child node,
anda is an action that allows this transition.
• Pn(·) – a probability distribution on the continuous vari-
ables in noden. For eachx ∈ X, Pn(x) is an estimate of the

probability density of passing through state(n,x) under the
current greedy policy. It is obtained byprogressingthe initial
state forward through the optimal actions of the greedy policy.
With eachPn, we maintain the probability of passing through
n under the greedy policy:M(Pn) =

∫
x∈X

Pn(x)dx.
• Hn(·) – the heuristic function. For eachx ∈ X, Hn(x) is a
heuristic estimate of the optimal expected reward from state
(n,x).
• Vn(·) – the value function. At the leaf nodes of the explicit
graph,Vn = Hn. At the non-leaf nodes of the explicit graph,
Vn is obtained by backing up theH functions from the de-
scendant leaves. If the heuristic functionHn′ is admissible in
all leaf nodesn′, thenVn(x) is an upper bound on the opti-
mal reward to come from(n,x) for all x reachable under the
greedy policy.
• gn – a heuristic estimate of the increase in value of the
greedy policy that we would get by expanding noden. If Hn

is admissible thengn represents an upper bound on the gain
in expected reward. The gaingn is used to determine the pri-
ority of nodes in the OPEN list (gn = 0 if n is in CLOSED),
and to bound the error of the greedy solution at each iteration
of the algorithm.

Note that some of this information is redundant. Neverthe-
less, it is convenient to maintain all of it so that the algorithm
can easily access it. The algorithm uses the customary OPEN
and CLOSED lists maintained by AO*. They encode the ex-
plicit graph and the current greedy policy. CLOSED contains
expanded nodes, and OPEN contains unexpanded nodes and
nodes that need to be re-expanded.

3.2 Algorithm
Algorithm 1 presents the main procedure. The crucial steps
are described in detail below.
Expanding a node (lines 10 to 20):At each iteration, the al-
gorithm expands the open noden with the highest prioritygn

in the greedy graph. Note that standard AO* expands only tip
nodes, whereas in our algorithm a previously expanded node
can be put back in OPEN (line23). Therefore, the expanded
node can be “in the middle of” the greedy policy subgraph.
The algorithm then considers all possible successors(a, n′)
of n given the state distributionPn. Typically, whenn is ex-
panded for the first time, we enumerate all actionsa possible
in (n,x) (a ∈ An(x)) for some reachablex (Pn(x) > 0),
and all arrival statesn′ that can result from such a transi-
tion (Pr(n′ | n,x, a) > 0).1 If n′ was previously expanded
(thus it has been put back in OPEN), only actions and arrival
nodes not yet expanded are considered. In line11, we check
whether a node has already been generated. This is not nec-
essary if the graph is a tree (i.e., there is only one way to get
to each discrete state).2 In line 15, a noden′ is terminal if
no action is executable in it (because of lack of resources)
In our application domain each goal pays only once, thus the
nodes in which all goals of the problem have been achieved

1We assume that performing an action in a state where it is not
allowed is an error that ends execution with zero or constant reward.

2Sometimes it is beneficial to use the tree implementation of AO*
when the problem graph isalmosta tree, by duplicating nodes that
represents the same (discrete) state reached through different paths.

1: Create the root noden0 which represents the initial state.
2: Pn0 = initial distribution on resources.
3: Vn0 = 0 everywhere inX.
4: gn0 = 0.
5: OPEN= {n0}.
6: CLOSED= GREEDY= ∅.
7: while OPEN∩ GREEDY 6= ∅ do
8: n = arg maxn′∈OPEN∩GREEDY(gn′).
9: Moven from OPEN to CLOSED.

10: for all (a, n′) ∈ A×N not expanded yet inn and reachable
underPn do

11: if n′ /∈ OPEN ∪ CLOSED then
12: Create the data structure to representn′ and add the tran-

sition (n, a, n′) to the explicit graph.
13: GetHn′ .
14: Vn′ = Hn′ everywhere inX.
15: if n′ is terminal:then
16: · Add n′ to CLOSED.
17: else
18: · Add n′ to OPEN.
19: else ifn′ is not an ancestor ofn in the explicit graphthen
20: Add the transition(n, a, n′) to the explicit graph.
21: if some pair(a, n′) was expanded at previous step (10) then
22: UpdateVn for the expanded noden and some of its ances-

tors in the explicit graph, with Algorithm 2.
23: UpdatePn′ andgn′ using Algorithm 3 for the nodesn′ that

are children of the expanded node or of a node where the op-
timal decision changed at the previous step (22). Move every
noden′ ∈ CLOSED whereP changed back into OPEN.

Algorithm 1: AO* algorithm for hybrid domains.

are also terminal. Finally, the test in line19 prevents loops in
the explicit graph, as discussed in section 2.

Putting a node from CLOSED back in OPEN when it is
regenerated is not a feature of standard AO* as described
in [Pearl, 1984]. We need this feature because each search
node represents several Markov states: When we find a
new path to an existing node, we might have reached some
Markov states that were not considered in the explicit graph
before, and so these states need to be expanded. In other
words, when we find a new path ton′, the state distribution
in Pn′ may need to be updated (line 23) and actions that were
not possible inn′ before may become applicable. Similarly,
new (discrete) nodes may also become possible.
Updating the value functions (lines 22 to 23):As in stan-
dard AO*, the value of a newly expanded node must be up-
dated. This consists of recomputing its value function with
Bellman’s equations (Eqn. 1), based on the value functions
of all children ofn in the explicit graph. This computation is
discussed in Section 3.3. Note that these backups involve all
continuous statesx ∈ X for each node,not just the reachable
X values ofxt. However, they consider only actions and ar-
rival nodes that are reachable according toPn. Once the value
of a state is updated, its new value must be propagated back-
ward in the explicit graph. The backward propagation stops
at nodes where the value function is not modified, and/or at
the root node. The whole process is performed by applying
Algorithm2 to the newly expanded node.
Updating the state distributions (line 23): Pn’s represent
the state distributionunder the greedy policy, and they need

1: Z = {n} //n the newly expanded node.
2: while Z 6= ∅ do
3: Choose a noden′ ∈ Z that has no descendant inZ.
4: Removen′ from Z.
5: UpdateVn′ following Eqn. 1.
6: if Vn′ was modified at the previous stepthen
7: Add all parents ofn′ in the explicit graph toZ.
8: if optimal decision changes for some(n′,x), Pn′(x) > 0

then
9: Update the greedy subgraph (GREEDY) inn′ if neces-

sary.
10: Markn′ for use at line23 of Algorithm1.

Algorithm 2: Updating the value functionsVn.

to be updated after recomputing the greedy policy. More pre-
cisely, P needs to be updated in each descendant of a node
where the optimal decision changed. To update a noden, we
consider all its parentsn′ in the greedy policy graph, and all
the actionsa that can lead from one of the parents ton. The
probability of getting ton is the sum over all(n′, a) of the
probability of arriving fromn′ undera, which is obtained by
convolvingPn′ and the transition probability ofa:

Pn(x) =
∑

(n′,a)∈Ωn

Pr(n | n′,x′, a)

∫
x′

Pn′(x′) Pr(x | n′,x′, a, n)dx′. (2)

Note that it is sufficient to consider only pairs(n′, a) wherea
is the greedy action inn′ for some reachable resource level:

Ωn = {(n′, a) ∈ N × A : ∃x ∈ X,

Pn′(x) > 0, µ∗n′(x) = a, Pr(n | n′,x, a) > 0} ,

whereµ∗n(x) ∈ A is the greedy action in(n,x). Note that this
operation may induce a loss of total probability mass (Pn <∑

n′ Pn′) because we can run out of a resource during the
transition and end up in a sink state. When the distribution
Pn of a noden in the OPEN list is updated, its prioritygn

is recomputed using the following equation (the priority of
nodes in CLOSED is maintained as 0):

gn =
∫
x∈S(Pn)−Xold

n

Pn(x)Hn(x)dx ; (3)

where S(P) is the support of P : S(P) =
{x ∈ X : P (x) > 0}, and Xold

n contains all x ∈ X
such that the state(n,x) has already been expanded before
(Xold

n = ∅ if n has never been expanded). The techniques
used to represent the continuous probability distributions
Pn and compute the continuous integrals are discussed in
Section 3.3. Algorithm 3 presents the state distributions
updates. It applies to the set of nodes where the greedy
decision changed during value updates (including the newly
expanded node, i.e.n in Algorithm1).

3.3 Handling Continuous Variables
Computationally, the most challenging aspect of the algo-
rithm is the handling of continuous state variables, and partic-
ularly the computation of the continuous integral in Bellman

1: Z = children of nodes where the optimal decision changed
when updating value functions in Algorithm1.

2: while Z 6= ∅ do
3: Choose a noden ∈ Z that has no ancestor inZ.
4: Removen from Z.
5: UpdatePn following Eqn. 2.
6: if Pn was modified at step5 then
7: Moven from CLOSED to OPEN.
8: Update the greedy subgraph inn if necessary.

Updategn following Eqn. 3.

Algorithm 3: Updating the state distributionsPn.

backups and Eqns. 2 and 3. We approach this problem using
the ideas developed in[Fenget al., 2004] for the same appli-
cation domain. However, we note that our algorithm could
also be used with other models of uncertainty and continu-
ous variables, as long as the value function can be computed
exactly in finite time. The approach of[Fenget al., 2004]
exploits the structure in the continuous value functions of the
type of problems we are addressing. These value functions
typically appear as collections of humps and plateaus, each
of which corresponds to a region in the state space where
similar goals are pursued by the optimal policy. Such struc-
ture is exploited by grouping states that belong to the same
plateau, while reserving a fine discretization for the regions
of the state space where it is the most useful (such as the
edges of plateaus).

To adapt the approach of[Fenget al., 2004], we make some
assumptions that imply that our value functions can be repre-
sented as piece-wise constant or linear. Specifically, we as-
sume that the continuous state space induced by every dis-
crete state can be divided into hyper-rectangles in each of
which the following holds: (i) The same actions are appli-
cable. (ii) The reward function is piece-wise constant or lin-
ear. (iii) The distribution of discrete effects of each action are
identical. (iv) The set of arrival values or value variations for
the continuous variables is discrete and constant. Assump-
tions (i-iii) follow from the hypotheses made in our domain
models. Assumption (iv) comes down to discretizing the ac-
tions resource consumptions, which is an approximation. It
contrasts with the naive approach that consists of discretiz-
ing the state space regardless of the relevance of the partition
introduced. Instead, we discretize the action outcomes first,
and then deduce a partition of the state space from it. The
state-space partition is kept as coarse as possible, so that only
the relevant distinctions between (continuous) states are taken
into account. Given the above conditions, it can be shown
(see[Fenget al., 2004]) that for any finite horizon, for any
discrete state, there exists a partition of the continuous space
into hyper-rectangles over which the optimal value function
is piece-wise constant or linear. The implementation repre-
sents the value functions as kd-trees, using a fast algorithm
to intersect kd-trees[Friedmanet al., 1977], and merging ad-
jacent pieces of the value function based on their value. We
augmented this approach by representing the continuous state
distributionsPn as piecewise constant functions of the con-
tinuous variables. Under the set of hypotheses above, if the
initial probability distribution on the continuous variables is
piecewise constant, then the probability distribution after any

finite number of actions is, too, and Eqn. 2 may always be
computed in finite time.3

3.4 Properties
As for standard AO*, it can be shown that if the heuristic
functionsHn are admissible (optimistic), andif the continu-
ous backups are computed exactly, then: (i) at each step of the
algorithm,Vn(x) is an upper-bound on the optimal expected
return in(n,x), for all (n,x) expanded by the algorithm; (ii)
the algorithm terminates after a finite number of iterations;
(iii) after termination,Vn(x) is equal to the optimal expected
return in(n,x), for all (n,x) reachable under the greedy pol-
icy (Pn(x) > 0). Moreover, if we assume that, in each state,
there is adoneaction that terminates execution with zero re-
ward then we can evaluate the greedy policy at each step of
the algorithm by assuming that execution ends each time we
reach a leaf of the greedy subgraph. Under the same hypothe-
ses, the error of the greedy policy at each step of the algorithm
is bounded by

∑
n∈GREEDY∩OPEN gn. This property allows

trading computation time for accuracy by stopping the algo-
rithm early.

4 Experimental Evaluation
We tested our algorithm on a slightly simplified variant of the
rover model used for NASA Ames October 2004 IS demo
[Pedersenet al., 2005]. In this domain, a planetary rover
moves in a planar graph made of locations and paths, sets
up instruments at different rocks, and performs experiments
on the rocks. Actions may fail, and their energy and time
consumption are uncertain. The problem instance used in
our preliminary experiments contains 43 propositional state
variables, 37 actions and 5 goals (rocks to be tested). There-
fore, there are248 different discrete states, which is far be-
yond the reach of a flat DP algorithm. Resource consump-
tions are drawn from two type of distributions: uniform and
normal, and then discretized. The results presented here were
obtained using a preliminary implementation of the piecewise
constant DP approximations described in[Fenget al., 2004]
based on a flat representation of state partitions instead of kd-
trees. This is considerably slower than an optimal implemen-
tation. To compensate, our domain features a single abstract
continuous resource, while the original domain contains two
resources (time and energy). We used the following admissi-
ble heuristic:Hn is the constant function equal to the sum of
the utilities of all the goals not achieved inn.

We varied the initial amount of resource available to the
rover. As available resource increases, more nodes are reach-
able and more reward can be gained. The performance of
the algorithm is presented in Table 1. We see that the num-
ber of reachable discrete states is much smaller than the total
number of states (248) and the number of nodes in an opti-
mal policy is surprisingly small. This indicates that AO* is
particularly well suited to our rover problems. However, the
number of nodes expanded is quite close to the number of
reachable discrete states. Thus, our current simple heuristic
is only slightly effective in reducing the search space, and

3A deterministic starting statex0 is represented by a uniform
distribution with very small rectangular support centered inx0.

A B C D E F G H
30 0.1 39 39 38 9 1 239
40 0.4 176 163 159 9 1 1378
50 1.8 475 456 442 12 1 4855
60 7.6 930 909 860 32 2 12888
70 13.4 1548 1399 1263 22 2 25205
80 32.4 2293 2148 2004 33 2 42853
90 87.3 3127 3020 2840 32 2 65252
100 119.4 4673 4139 3737 17 2 102689
110 151.0 6594 5983 5446 69 3 155733
120 213.3 12564 11284 9237 39 3 268962
130 423.2 19470 17684 14341 41 3 445107
140 843.1 28828 27946 24227 22 3 17113
150 1318.9 36504 36001 32997 22 3 1055056

Table 1:Performance of the algorithm for different initial resource
levels. A: initial resource (abstract unit). B: execution time (s). C:
reachable discrete states. D: # nodes created by AO*. E: # nodes
expanded by AO*. F: # nodes in the optimal policy graph. G: #
goals achieved in the longest branch of the optimal solution. H: #
reachable Markov states.

Initial Execution # nodes # nodes
resource ε time created by AO* expanded by AO*

130 0.00 426.8 17684 14341
130 0.50 371.9 17570 14018
130 1.00 331.9 17486 13786
130 1.50 328.4 17462 13740
130 2.00 330.0 17462 13740
130 2.50 320.0 17417 13684
130 3.00 322.1 17417 13684
130 3.50 318.3 17404 13668
130 4.00 319.3 17404 13668
130 4.50 319.3 17404 13668
130 5.00 318.5 17404 13668
130 5.50 320.4 17404 13668
130 6.00 315.5 17356 13628

Table 2:Complexity of computing anε-optimal policy. The opti-
mal return for an initial resource of 130 is 30.

reachability makes the largest difference. This suggests that
much progress can be obtained by using better heuristics. The
last column measures the total number of reachable Markov
states, after discretizing the action consumptions as in[Feng
et al., 2004]. This is the space that a forward search algo-
rithm manipulating Markov states, instead of discrete states,
would have to tackle. In most cases, it would be impossi-
ble to explore such space with poor quality heuristics such as
ours. This indicates that our algorithm is quite effective in
scaling up to very large problems by exploiting the structure
presented by continuous resources.

WhenHn is admissible, we can bound the error of the cur-
rent greedy graph by summinggn over fringe nodes. In Ta-
ble 2 we describe the time/value tradeoff we found for this do-
main. On the one hand, we see that even a large compromise
in quality leads to no more than 25% reduction in time. On
the other hand, we see that much of this reduction is obtained
with a very small price (ε = 0.5). Additional experiments are
required to learn if this is a general phenomenon.

5 Conclusions
We presented a variant of the AO* algorithm that, to the best
of our knowledge, is the first algorithm to deal with: limited
continuous resources, uncertainty, and oversubscription plan-
ning. We developed a sophisticated reachability analysis in-
volving continuous variables that could be useful for heuristic

search algorithms at large. Our preliminary implementation
of this algorithm shows very promising results on a domain
of practical importance. We are able to handle problems with
248 discrete states, as well as a continuous component.

We are now implementing the full algorithm, on whose
performance we shall report in the final version. This algo-
rithm includes: (1) a full implementation of the techniques
described in[Fenget al., 2004]; (2) a rover model with two
continuous variables; (3) a more informed heuristic function.
We will generate this heuristic function by solving the orig-
inal planning problem while assuming deterministic transi-
tions for the continuous variables, i.e.,Pr(x′|n,x, a, n′) ∈
{0, 1}. If we assume actions consumes the minimal amount
of each resource, we obtain an admissible heuristic function.
A (probably) more informative, but inadmissible heuristic
function is obtained by using the mean resource consumption.
Our central idea is to use thesame algorithmto solve both
the relaxed and original problem and to use the value func-
tion Vn for the relaxed problem as the heuristic function. The
relaxed problem is easier to solve, (preliminary experiments
show that it requires 10% of the running time of the current
algorithm) and unlike typical heuristic functions which are
recomputed for each search state, one expansion from the ini-
tial state should provides us with values that can be used for
most reachable nodes.

References
[Altman, 1999] E. Altman. Constrained Markov Decision Pro-

cesses. Chapman and HALL/CRC, 1999.

[Bresinaet al., 2002] J. Bresina, R. Dearden, N. Meuleau, S. Ra-
makrishnan, D. Smith, and R. Washington. Planning under con-
tinuous time and resource uncertainty: A challenge for AI. In
Proc. of UAI-02, pages 77–84, 2002.

[Fenget al., 2004] Z. Feng, R. Dearden, N. Meuleau, and R. Wash-
ington. Dynamic programming for structured continuous Markov
decision problems. InProc. of UAI-04, pages 154–161, 2004.

[Friedmanet al., 1977] J.H. Friedman, J.L. Bentley, and R.A.
Finkel. An algorithm for finding best matches in logarithmic ex-
pected time.ACM Trans. Mathematical Software, 3(3):209–226,
1977.

[Hansen and Zilberstein, 2001] E. Hansen and S. Zilberstein.
LAO*: A heuristic search algorithm that finds solutions with
loops.Artificial Intelligence, 129:35–62, 2001.

[Pearl, 1984] J. Pearl.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1984.

[Pedersenet al., 2005] L. Pedersen, D. Smith, M. Deans, R. Sar-
gent, C. Kunz, D. Lees, and S.Rajagopalan. Mission planning and
target tracking for autonomous instrument placement. InSubmit-
ted to 2005 IEEE Aerospace Conference, 2005.

[Smith, 2004] D. Smith. Choosing objectives in over-subscription
planning. InProc. of ICAPS-04, pages 393–401, 2004.

[van den Brielet al., 2004] M. van den Briel, M.B. Do
R. Sanchez and, and S. Kambhampati. Effective approaches
for partial satisfation (over-subscription) planning. InProc. of
AAAI-04, pages 562–569, 2004.

[Younes and Simmons, 2004] H.L.S. Younes and R.G. Simmons.
Solving generalized semi-Markov decision processes using con-
tinuous phase-type distributions. InProc. of AAAI-04, pages 742–
747, 2004.

